Everyday we hear about a green future. But some way or another, that future seems to be constantly delayed or difficult to put into words or images. Where are the examples of the new green technologies? Concrete practices, that make us dream that the oft-mentioned win-win feature of green technologies will actually come to fruition?
In this article I have collected examples of demonstrated green technologies / products that hold considerable promise regarding reducing our footprint on our planet.
We know very well that the best way to save carbon emissions is to save energy.
What if we could light up entire buildings with just sunlight? This is what the Swedish company Parans has been developing. Their technology “Sunlight Transport” is a passive system that channels sunlight from an external source and transports it through fibre optic cables to illuminate light-deprived rooms. As a result, energy consumption during daytime is zeroed.
The sunlight emitting luminaries look and work pretty much like a normal lamp, giving off ambient light. Parans’ system can spread light in a range of customized ways: over a large surface, directed at the ceiling (which gives an illusion that the light comes through an open shaft), or onto a large wall area like a waterfall. The light changes as sunlight outside changes, enabling people even in the darkest rooms to re-establish a connection with the natural cycle outside. Parans suggests that the fibre optic cables can lead sunlight a hundred metres inside a building while retaining maximum light intensity.
As the indoor lighting is provided by a passive system there is no energy consumption — during daytime hours that is. During the evening, the system must be replaced by a regular artificial setting.
Remember the floating waste continent in the Pacific? Well, imagine if we could grab all that plastic to maintain our road infrastructure. Well, this possibility actually exists, and they are called “Plastic Roads”.
In terms of plastic roads technology we have two options: either they can be made entirely of plastic or mixed together with asphalt. The former is the most common (see e.g. MacRebur). The 100% plastic variety consists of prefabricated, hollow, modular elements made from consumer waste plastics. There is no asphalt in the mix. This product, duly called PlasticRoad, is still in the demonstration phase.
The developer has just demonstrated the product in two 30-metre stretches of cycle track in the Dutch towns of Zwolle and Giethoorn. Monitoring is on-going right now to understand its long-term impact on the local environment. If successful, PlasticRoads can also significantly reduce the carbon footprint (50 to 72%) of traditional road construction thanks to longer lifespan and reduction of transport movements involved in its construction.
A solar flower is a solar panel system mounted on the ground and shaped as a flower. To my knowledge there is currently only one commercial brand in the market — SmartFlower. Their system consists of a structure with 12 petals which open up at the beginning of the day with the sun, and close with the sunset. Contrary to solar panels that require installation, the solar flowers are completely portable and ready-to-plug-in. Also, the system is self-cleaning twice a day, which increases efficiency and durability.
The biggest difference from a rooftop panel is that it includes a sun tracker to maximize solar energy production. The SmartFlower produces between 4–6 MWh/year depending on the location, enough to fulfil the average electricity needs of a household in Europe and half of an American household.
The Solar Flower is an environment-friendly way to get clean energy. The sole impact should be related to the production and the materials included.
Plant or Green Walls have become an architectural piece in recent years. Plant Walls are vertical built structures that hold enough soil to have different types of plants or other greens growing on them. Because these structures have living plants, they also usually feature built-in irrigation systems. A Plant Wall can be enhanced with features of smart technology, such as monitoring and self-irrigation, improving its survival, aesthetic and air purification potential. Like any other plant, some degree of maintenance is however required. Pruning dead plants and weeds and filling in gaps will keep the wall healthy and pleasant looking.
There are numerous advantages to having plant walls besides the visual impact. Outdoor plant walls insulate buildings, capture rainfall and provide habitats for insects. The transpiration process of plants can slightly reduce temperatures and purify the air indoors as well (Tiina Mustonen). Plants can also reduce stress and improve concentration (Psychology Today).
Some brands include Green Fortune, Plant Walls, Plants on Walls and Natural Green Walls.
Milk textile is a type of fabric that is made with the casein found in milk. It has long been prized for its softness and smoothness. However, it is relatively difficult to produce casein fibre. To achieve the fibre the casein is extracted and purified and through additional chemical processes transformed into yarn. These processes traditionally rely on toxic chemicals (including sulphuric acid and formaldehyde) and considerable quantities of milk. The German company Qmilk has however reinvented the process to make it chemical-free and use no more than two litres of milk per Kg of fibre, while also maintaining a zero-waste policy. The material is produced at lower temperatures therefore requiring less energy than other textile production processes. The end-result is 100% natural and smooth as silk fabric.
Milk textiles can be used to weave socks, underwear, other forms of intimate apparel, clothing usually made from wool, and household textiles.