Vertical Farming and Hydroponics
Controlled environment agriculture (also known as weather and climate-proof farming, or more commonly indoor vertical farming), is the production of plants in an indoor environment. While indoor farming is not a new phenomenon (greenhouses have been used for centuries), the more recent innovation of hydroponic farming breaks down the growing process even further by eliminating all unnecessary components of traditional farming. Thinking back to the process of photosynthesis learned in middle-school biology class, we can recall the core elements to plant growth as energy, nutrients, water and CO2. Controlled environment agriculture (CEA) follows this basic formula and does away with all unnecessary inputs that have become essential to our current agriculture system, such soil and pesticides. In the CEA process, conventional elements of traditional farming are substituted with artificial ones. Rather than from the sun, plants receive energy from LED lighting that is tailored specifically to the energy needs of the plants.
Humans are now up against a myriad of new demanding issues that are leading dramatic change to our global lifestyles: climate change, hazardous infectious diseases, increasing urbanization, and the depletion of natural resource deposits. Hydroponic farming has strong potential to mitigate the threats these issues pose to our agricultural system. Growing crops in near optimal conditions using controlled environment agriculture (CEA) technology is one of the biggest benefits of hydroponic farming.
Crops grown indoors and hydroponically can be grown anywhere on earth at any time of the year, regardless of weather conditions, availability of cultivable land, or soil quality. Hydroponic farming has the potential to provide fresh, local food for areas with extreme droughts and low soil quality, such as in sub-Saharan Africa where access to leafy green vegetables is often limited.
Once these initial costs are overcome, more challenges must be faced in order to ensure a productive and secure hydroponic farm. Stacked rack systems (as opposed to vertical growth towers) can face challenges with air flow, heat and humidity. With horizontal modeling, there needs to be much more space between each plane to reduce the risks associated with poor airflow, such as high humidity, increased vulnerability to pests and disease, and a reduced growing capacity from lower CO2 levels. Additionally, the energy costs associated with hydroponic farming and maintaining optimal growing conditions for the plants are quite high. The combination of high intensity LED lighting plus climate monitoring and control systems results in a large electricity usage at hydroponic farms. It is important that hydroponic farms look to source their energy from renewable resources by investing in solar panels or wind energy. Farms such as Jones Food Company source all of their energy from the solar panels installed on the roofs of their facilities.
Hydroponic farms offer a pathway towards a more sustainable food ethic that prioritizes the health of our food, bodies and environment without the heavy use of chemicals. Far from being a pipe-dream, hydroponic farming is already being rapidly integrated into current food networks. Ocado, a leading British online supermarket, recently announced its partnership with Priva and 80-Acres, both leading participants in the vertical farm industry. This joint venture will allow Ocado to supply fresh, local and hydroponically-grown ingredients to its customers. Furthermore, as the industry becomes more competitive, more partnerships like this will help drive down the prices of hydroponically-grown produce and make hydroponic farms more competitive with conventional farms. While our global climate issue is multi-dimensional and a result of many different practices, reducing the impact from the agricultural industry will be a huge step forward. At the beginning of the 21st century, hydroponic farming had not yet been invented. Now, only 20 years later, the industry has gained solid ground and is already dramatically shifting our agricultural practices and the future of our food system.
The many benefits of hydroponic farming do not come without challenges. For small, start-up farmers, entering into the hydroponic farming world can come with high costs associated with renting the space, mortgage payments, the renovation of a building or space to accommodate the hydroponic structures, initial costs for materials (such as LED lights, watering and feed systems, plant racks, seeds, controlled environment technology, etc), and costs of the labor and electricity to keep the farm up and running. While these entry costs are high, hydroponic farms have the potential to turn underutilized buildings into farmland to serve the community and create jobs.