Vertical farming and hydroponics are green technologies revolutionizing agriculture. They enable consistent production of high-quality food in limited spaces and challenging climates.
Vertical farming stacks plants in columns or shelves, optimizing space and controlling the climate. Hydroponics uses LED lighting and artificial nutrients to grow plants in water or an inorganic substrate without soil. Combining both methods offers a sustainable solution for urban areas, reducing the need for transportation and supporting local food sources like microgreens for nearby restaurants.
The amount of resources used by traditional agriculture is astronomical. With most crop production already pushed to its ceiling both genetically and chemically
(a significant increase in fertilizer or pesticide use will not sufficiently increase yields), intensification and the expansion of land used for food production have been seen as the only viable options to meet these growing food demands. Globally, 70% of water usage goes towards agricultural production, largely due to unsustainable irrigation practices. At present, 38% of earth’s non-frozen land is used for growing food. This percentage will continue to rise: by 2050, 593 million hectares of land will need to be transformed into agricultural land to meet the projected calorie needs of the global population if we continue with business as usual. This needed land is equal to roughly double the size of India. This outlook is placing many essential ecosystems at risk of being completely destroyed, especially those that are key to maintaining an already disturbed balance of carbon dioxide in our atmosphere.
Controlled environment agriculture (also known as weather and climate-proof farming, or more commonly indoor vertical farming), is the production of plants in an indoor environment. While indoor farming is not a new phenomenon (greenhouses have been used for centuries), the more recent innovation of hydroponic farming breaks down the growing process even further by eliminating all unnecessary components of traditional farming. Thinking back to the process of photosynthesis learned in middle-school biology class, we can recall the core elements to plant growth as energy, nutrients, water and CO2. Controlled environment agriculture (CEA) follows this basic formula and does away with all unnecessary inputs that have become essential to our current agriculture system, such soil and pesticides. In the CEA process, conventional elements of traditional farming are substituted with artificial ones. Rather than from the sun, plants receive energy from LED lighting that is tailored specifically to the energy needs of the plants. Instead of using soil, seeds are planted in soil-free growth mediums such as coconut husk to provide the seedlings with a surface to attach its roots to. This soilless process minimizes the risk of invasion by bugs and weeds into the growth environment, ensuring a much more clean and simple process. These seedlings are sometimes placed into growth trays which are stacked upwards, instead of outwards, in a vertical racking system. The vertical integration of plants allows for farmers to optimize the total space usage of their growth area, making it possible for farmers to reduce their land use by up to 90-99% while also increasing productivity. Plants growing in vertical farms are fed essential nutrients either hydroponically, in which nutrient-infused water is fed to the plant roots which sit in a growth medium, or aeroponically, in which the plant roots dangle freely and are misted with the nutrient-infused water.