Carbon capture and storage (CCS) refers to a collection of technologies that can combat climate change by reducing carbon dioxide (CO2) emissions. The idea behind CCS is to capture the CO2 generated by burning fossil fuels before it is released to the atmosphere. The question is then: What to do with the captured CO2? Most current CCS strategies call for the injection of CO2 deep underground. This forms a “closed loop”, where the carbon is extracted from the Earth as fossil fuels and then is returned to the Earth as CO2.
How does CSS work?
Using the CO2
Today, CCS projects are storing almost 45 million tons of CO2 every year, which is about the amount of CO2 emissions created by 10 million passenger cars. Capture generally takes place at large stationary sources of CO2, like power plants or industrial plants that make cement, steel, and chemicals. Most current carbon capture projects use a liquid to chemically remove the CO2 before it goes out the smokestack, but several new types of capture processes are under development.
The captured CO2 gas is then compressed so it becomes liquid-like and transported to a storage site, generally through a pipeline. Ship transport is more expensive than using pipelines, but it is being considered in both Europe and Japan. Once at the storage site, the CO2 is pumped more than 2,500 feet down wells into geological formations like used-up oil and gas reservoirs, as well as formations that contain unusable, salty water.
CCS is sometimes referred to as CCUS, where the “U” stands for utilization. Enhanced oil recovery (EOR) is the major use of CO2 today. EOR is where CO2 is injected into active oil reservoirs in order to recover more oil. Other possible uses of CO2 include making chemicals or fuels, but they require large amounts of carbon-free energy, making the costs too high to be competitive today. For large-scale implementation of CCS, utilization is projected to use less than 10% of the captured CO2.
Policy Support For Cabon Capture
Carbon Capture in Action
There is strong bipartisan support to accelerate carbon capture deployment. In February 2018, Congress extended and expanded key financial incentives for investment in several advanced low-carbon tecnologies. The two-year budget package included the FUTURE act, sponsored by Senators Heidi Heitkamp (D-N.D.), Shelley Moore Capito (R-W.Va.), Sheldon Whitehouse (D-R.I.), and John Barrasso (R-Wyo.). The legislation reforms and extends a federal tax credit to boost carbon capture, known as Section 45Q. The FUTURE Act also allows for the first time use of the tax credit for capture of carbon monoxide from industrial facilities like steel mills, direct air capture (DAC) of CO2 from the atmosphere, and for the conversion of captured carbon into useful products.
As of 2020, at least 26 commercial-scale carbon capture projects are operating around the world with 21 more in early development and 13 in advanced development reaching front end engineering design (FEED). Industrial processes where large-scale carbon capture has been demonstrated and is in commercial operation include coal gasification, ethanol production, fertilizer production, natural gas processing, refinery hydrogen production and, most recently, coal-fired power generation.
Types of Carbon Capture Technology
Carbon Sinks
Natural forms of CCS are called ‘carbon sinks’ and they are vast spaces where the natural habitats capture CO2 from the atmosphere – these include forests, oceans, grasslands and wetlands. Scientists, as well as environmental and conservation experts, recognise that the preservation and cultivation of carbon sinks could increase the amount of carbon taken from our atmosphere in the shortest space of time. Grasslands and wetlands in particular have a much quicker turnaround for carbon storage, with coastal wetlands storing more carbon per hectare than other habitats like forests.
Saline Aquifers
Deep saline aquifers are underground geological formations; vast expanses of porous, sedimentary rock, which are filled with salt water. CO2 can be injected into these and stored permanently – in fact, saline aquifers have the largest identified storage potential among all other forms of engineered CCS. The ‘Endurance’ aquifer, located in the North Sea off the coast of the UK, is one such formation, which sits approximately 1 mile (1.6km) below the sea bed. Roughly the size of Manhattan Island and the height of The Shard or the Empire State Building, its porous composition allows for carbon dioxide to be injected into it and stored safely for potentially thousands of years. In the US, multiple large-scale saline aquifers are now being used for CCS purposes, such as the Citronelle Project in Alabama. During its three-year trial period, it was successful in storing more than 150,000 tonnes of CO2 per year, which was captured from a nearby pilot facility.
Giant Air Filters
Carbon capture technologies are still being developed globally, with individual countries creating strategies that respond to their own net zero goals. For example, in China companies have developed experimental commercial air filters – huge towers that clean air of pollutants on a huge scale. These giant air towers purify air by drawing it into glass rooms, which are heated using solar power creating a greenhouse effect. This hot air up is pushed up the tower through a series of filters, before being released back into the atmosphere as clean air. One such giant air-purifier tower in Xian has reportedly been cleaning more than 353 million cubic feet of air each day, dramatically improving local air quality. Manufacturers believe they are close to developing even larger towers, where just one could clean enough air on a daily basis for a small city.