Biofuels

 

 

 

 

 

 

 

What is Biofuels ??

    Biofuel, any fuel that is derived from biomass—that is, plant or algae material or animal waste. Since such feedstock material can be replenished readily, biofuel is considered to be a source of renewable energy, unlike fossil fuels such as petroleum, coal, and natural gas. Biofuel is commonly advocated as a cost-effective and environmentally benign alternative to petroleum and other fossil fuels, particularly within the context of rising petroleum prices and increased concern over the contributions made by fossil fuels to global warming. Many critics express concerns about the scope of the expansion of certain biofuels because of the economic and environmental costs associated with the refining process and the potential removal of vast areas of arable land from food production.

 

Webmaster : Sorrawish Jankaew M.5/5 No.10         Email : sorawishj@gmail.com           Tel. 095-7122793

 

 

 

 

 

 

 

Liquid biofuels are of particular interest because of the vast infrastructure already in place to use them, especially for transportation. The liquid biofuel in greatest production is ethanol (ethyl alcohol), which is made by fermenting starch or sugar.

 

In the United States ethanol biofuel is made primarily from corn (maize) grain, and it is typically blended with gasoline to produce “gasohol,” a fuel that is 10 percent ethanol. In Brazil, ethanol biofuel is made primarily from sugarcane, and it is commonly used as a 100-percent-ethanol fuel or in gasoline blends containing 85 percent ethanol. Unlike the “first-generation” ethanol biofuel produced from food crops, “second-generation” cellulosic ethanol is derived from low-value biomass that possesses a high cellulose content, including wood chips, crop residues, and municipal waste. Cellulosic ethanol is commonly made from sugarcane bagasse, a waste product from sugar processing, or from various grasses that can be cultivated on low-quality land. Given that the conversion rate is lower than with first-generation biofuels, cellulosic ethanol is dominantly used as a gasoline additive.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIOFUEL CONVERSION PROCESSES

 

 

DECONSTRUCTION 

 

 

Producing advanced biofuels (e.g., cellulosic ethanol and renewable hydrocarbon fuels) typically involves a multistep process. First, the tough rigid structure of the plant cell wall—which includes the biological molecules cellulose, hemicellulose, and lignin bound tightly together—must be broken down. This can be accomplished in one of two ways: high temperature deconstruction or low temperature deconstruction.

High-Temperature Deconstruction 

High-temperature deconstruction makes use of extreme heat and pressure to break down solid biomass into liquid or gaseous intermediates. There are three primary routes used in this pathway:

During pyrolysis, biomass is heated rapidly at high temperatures (500°C–700°C) in an oxygen-free environment. The heat breaks down biomass into pyrolysis vapor, gas, and char. Once the char is removed, the vapors are cooled and condensed into a liquid “bio-crude” oil.

Low-Temperature Deconstruction 

Low-temperature deconstruction typically makes use of biological catalysts called enzymes or chemicals to breakdown feedstocks into intermediates. First, biomass undergoes a pretreatment step that opens up the physical structure of plant and algae cell walls, making sugar polymers like cellulose and hemicellulose more accessible. These polymers are then broken down enzymatically or chemically into simple sugar building blocks during a process known as hydrolysis.

 

 

 

 

UPGRADING

Following deconstruction, intermediates such as crude bio-oils, syngas, sugars, and other chemical building blocks must be upgraded to produce a finished product. This step can involve either biological or chemical processing.

Microorganisms, such as bacteria, yeast, and cyanobacteria, can ferment sugar or gaseous intermediates into fuel blendstocks and chemicals. Alternatively, sugars and other intermediate streams, such as bio-oil and syngas, may be processed using a catalyst to remove any unwanted or reactive compounds in order to improve storage and handling properties.

The finished products from upgrading may be fuels or bioproducts ready to sell into the commercial market or stabilized intermediates suitable for finishing in a petroleum refinery or chemical manufacturing plant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

UPGRADING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference : https://www.britannica.com/technology/biofuel

https://www.energy.gov/eere/bioenergy/biofuel-basics