SOLAR ENERGY | |
---|---|
SOLAR ENERGY radiation from the Sun capable of producing heat, causing chemical reactions, or generating electricity. The total amount of solar energy incident on Earth is vastly in excess of the world's current and anticipated energy requirements. If suitably harnessed, this highly diffused source has the potential to satisfy all future energy needs. In the 21st century solar energy has become increasingly attractive as a renewable energy source because of its inexhaustible supply and its nonpolluting character, in stark contrast to the finite fossil fuels coal, petroleum, and natural gas. See also solar power.
Importance and potentialThe Sun is an extremely powerful energy source, and sunlight is by far the largest source of energy received by Earth, but its intensity at Earth's surface is actually quite low. This is essentially because of the enormous radial spreading of radiation from the distant Sun. A relatively minor additional loss is due to Earth's atmosphere and clouds, which absorb or scatter as much as 54 percent of the incoming sunlight. The sunlight that reaches the ground consists of nearly 50 percent visible light, 45 percent infrared radiation, and smaller amounts of ultraviolet and other forms of electromagnetic radiation. Solar energy drives and affects countless natural processes on Earth. For example, photosynthesis by plants, algae, and cyanobacteria relies on energy from the Sun, and it is nearly impossible to overstate the importance of that process in the maintenance of life on Earth. If photosynthesis ceased, there would soon be little food or other organic matter on Earth. Most organisms would disappear, and in time Earth's atmosphere would become nearly devoid of gaseous oxygen. Solar energy is also essential for the evaporation of water in the water cycle, land and water temperatures, and the formation of wind, all of which are major factors in the climate patterns that shape life on Earth.
Thermal energyAmong the most common devices used to capture solar energy and convert it to thermal energy are flat-plate collectors, which are used for solar heating applications. Because the intensity of solar radiation at Earth's surface is so low, these collectors must be large in area. Even in sunny parts of the world's temperate regions, for instance, a collector must have a surface area of about 40 square meters (430 square feet) to gather enough energy to serve the energy needs of one person.
|
|
REFERENCE:https://www.britannica.com/science/solar-energy#:~:text=Solar%20energy%20is%20the%20radiation,current%20and%20anticipated%20energy%20requirements. | |
WEBMASTER:Sirawit Wichaikul M5/2 No.21 | |